Contact Us
Position:Home > News > Industry News >

3D printing device could set up better nanofibers

2017-11-07 11:34 View:
Nanofibers are useful for any application that benefits from a high ratio of surface area to volume—such as solar cells, which try to maximize exposure to sunlight, or fuel cell electrodes, which catalyze reactions at their surfaces. Nanofibers can also yield materials that are permeable only at very small scales, such as water filters, or that are remarkably tough for their weight, such as body armor.
Meshes made from fibers with nanometer-scale diameters have a wide range of potential applications, including tissue engineering, water filtration, solar cells, and even body armor. But their commercialization has been hampered by inefficient manufacturing techniques.
In the latest issue of the journal Nanotechnology, MIT researchers describe a new device for producing nanofiber meshes, which matches the production rate and power efficiency of its best-performing predecessor—but significantly reduces variation in the fibers' diameters, an important consideration in most applications.
But whereas the predecessor device, from the same MIT group, was etched into silicon through a complex process that required an airlocked "clean room," the new device was built using a $3,500 commercial 3-D printer. The work thus points toward nanofiber manufacture that is not only more reliable but also much cheaper.
The new device consists of an array of small nozzles through which a fluid containing particles of a polymer are pumped. As such, it is what's known as a microfluidic device.
"My personal opinion is that in the next few years, nobody is going to be doing microfluidics in the clean room," says Luis Fernando Velásquez-García, a principal research scientist in MIT's Microsystems Technology Laboratories and senior author on the new paper. "There's no reason to do so. 3-D printing is a technology that can do it so much better—with better choice of materials, with the possibility to really make the structure that you would like to make. When you go to the clean room, many times you sacrifice the geometry you want to make. And the second problem is that it is incredibly expensive."
Velásquez-García is joined on the paper by two postdocs in his group, Erika García-López and Daniel Olvera-Trejo. Both received their PhDs from Tecnológico de Monterrey in Mexico and worked with Velásquez-García through MIT and Tecnológico de Monterrey's nanotech research partnership.
Bio-magnetic beads, Sulfydryl modified
Huitong TM Samples mixed instrument|100%
Magnetic beads method glue recovery kit
Nano cerium oxide powder (CeO2 powder)
Nano Tungsten disulfide powder
Tungsten carbide nano powder (99.9% )
Nano Dy2O3 powder
Nano Cobalt powder (Nano Co powder)
Nano Aluminum oxide powder (Nano Al2O3Powder)
Nano Boron carbide powder (Nano CB4 Powder)
Tantalum carbide powder (nano particle size)
Nano titanium(Ti) Powder
Nano Titanium carbide powder (Nano TiC powder)
High purity Nano Manganese(Mn) powder
Nano SiO2 Powder
Nano Fe2O3 powder (99.9%)
Nano Aluminium Nitride powder (Nano AlN powder)
Nano Tungsten disulfide powder (Nano WS2 powder)
chitosan beads
aldehyde beads | aldehyde modified microsphere
Bio-magnetic beads, Carboxylic modified
Bio-magnetic beads, Amino modified
Bio-magnetic beads, Silicic modified
Magnetic fluid
Nano SiO2 dispersing agent
Nano Co dispersing agent
Nano oxidation zinc dispersing agent
Nano silver Soil antibacterial agent
Polyurethane release agents
Nano silver Powder (Nano Ag powder purity 99.99)
Thiadiazole-octyl mercaptan condensates(CAS No: 13539-13-4)
Dimercapto-thiadiazole dimerBis-DMTD
DMTD(2,5- dimercapto-1,3,4- thiadiazole)
Methylene bis (dibutyl dithio carbamate)
MoDTC Complexes (Solid MoDTC)
MoDTP (Liquid Molybdenum Dithiophosphate)
Nano Co dispersing agent
Water-based magnesium stearate
Polyurethane Internal Release Agent
Water-based zinc stearate (Vinyl lubricant )
Stearic acid amides emulsion for themal paper
Water-Based Calcium stearate
Coated with abrasive coating slurry