Contact Us
Position:Home > News > Industry News >

nanoparticle delivery to tumors

2017-11-07 11:30 View:
 
Many cancer patients do not respond to chemotherapies because the drugs never reach the cancer cells. Even in nanomedicine, which is one of the best new methods for delivering drugs to a tumor, only about one percent of a dose of nanoparticles will successfully arrive at the intended tumor site, while the rest are filtered out by the immune cells of the liver and spleen.
Using chloroquine, the researchers not only increased the circulation of nanoparticles in the body, but also reduced the body's filtration of nanoparticles, as well as improved drug delivery to breast tumors. The study was recently published in Scientific Reports, a research journal from the Nature Publishing Group.
Led by Mauro Ferrari, Ph.D., president and CEO of the Houston Methodist Research Institute, and Joy Wolfram, Ph.D. (now at Mayo Clinic's campus in Jacksonville, Florida), the research showed that chloroquine interfered with immune cells called macrophages, which are used by the body to identify microscopic foreign objects and destroy them.
In this study, mice models received injections of chloroquine, followed by an injection of nanoparticles. Chloroquine decreased the macrophages' ability to clean up the nanoparticles. The findings are significant, because the nanoparticles not only remained in circulation, but also accumulated in mouse tumors, as well as in the lungs of healthy mice, suggesting that the approach also may enhance treatment for lung diseases.
Chloroquine was invented in the 1940s for the prevention and treatment of malaria. Since it mildly suppresses the immune system, the drug also is used in some autoimmune disorders, such as rheumatoid arthritis and lupus. Apart from this research, the drug is also being studied in other cancers, such as triple-negative breast cancer and pancreatic cancer.
Ferrari, considered one of the founders of nanomedicine and transport oncophysics (the physics of mass transport within a cancer lesion), says researchers and clinicians need to understand the limitations of transport mechanisms to identify effective immunotherapy treatments for patients.
 
A new study shows that a 70-year-old malaria drug can block immune cells in the liver so nanoparticles can arrive at their intended tumor site, overcoming a significant hurdle of targeted drug delivery, according to a team of researchers led by Houston Methodist.
 
In this study, mice models received injections of chloroquine, followed by an injection of nanoparticles. Chloroquine decreased the macrophages' ability to clean up the nanoparticles. The findings are significant, because the nanoparticles not only remained in circulation, but also accumulated in mouse tumors, as well as in the lungs of healthy mice, suggesting that the approach also may enhance treatment for lung diseases.
Bio-magnetic beads, Sulfydryl modified
Huitong TM Samples mixed instrument|100%
Magnetic beads method glue recovery kit
Nano cerium oxide powder (CeO2 powder)
Nano Tungsten disulfide powder
Tungsten carbide nano powder (99.9% )
Nano Dy2O3 powder
Nano Cobalt powder (Nano Co powder)
Nano Aluminum oxide powder (Nano Al2O3Powder)
Nano Boron carbide powder (Nano CB4 Powder)
Tantalum carbide powder (nano particle size)
Nano titanium(Ti) Powder
Nano Titanium carbide powder (Nano TiC powder)
High purity Nano Manganese(Mn) powder
Nano SiO2 Powder
Nano Fe2O3 powder (99.9%)
Nano Aluminium Nitride powder (Nano AlN powder)
Nano Tungsten disulfide powder (Nano WS2 powder)
chitosan beads
aldehyde beads | aldehyde modified microsphere
Bio-magnetic beads, Carboxylic modified
Bio-magnetic beads, Amino modified
Bio-magnetic beads, Silicic modified
Magnetic fluid
Nano SiO2 dispersing agent
Nano Co dispersing agent
Nano oxidation zinc dispersing agent
Nano silver Soil antibacterial agent
Polyurethane release agents
Nano silver Powder (Nano Ag powder purity 99.99)
Thiadiazole-octyl mercaptan condensates(CAS No: 13539-13-4)
Dimercapto-thiadiazole dimerBis-DMTD
DMTD(2,5- dimercapto-1,3,4- thiadiazole)
Methylene bis (dibutyl dithio carbamate)
MoDTC Complexes (Solid MoDTC)
MoDTP (Liquid Molybdenum Dithiophosphate)
Nano Co dispersing agent
Water-based magnesium stearate
Polyurethane Internal Release Agent
Water-based zinc stearate (Vinyl lubricant )
Stearic acid amides emulsion for themal paper
Water-Based Calcium stearate
Coated with abrasive coating slurry