Contact Us
Position:Home > News > Industry News >

Researchers build carbon nanotube transistors that outperfor

2017-01-21 16:06 View:

Phys.org)—A team of researchers at Peking University has built a carbon nanotube-based working transistor and report that it outperformed larger transistors made with silicon. In their paper published in the journal Science, the team describes how they built the transistor, how it performed and the challenges that still remain before such transistors can be mass produced. 

Everyone in the computer business knows the limit to which  can be made smaller is drawing ever closer, so many teams around the world are searching for a suitable replacement. One of the most promising candidates is carbon nanotubes—due to their unique properties, transistors based on them could be smaller, faster and more efficient. Unfortunately, the difficulty in growing carbon nanotubes and their sometimes persnickety nature means that a way to make them and mass produce them has not been found. In this new effort, the researchers report on a method of creating  transistors that are suitable for testing, but not .

To create the transistors, the researchers took a novel approach—instead of growing carbon nanotubes that had certain desired properties, they grew some and put them randomly on a silicon surface and then added electronics that would work with the properties they had—clearly not a strategy that would work for mass production, but one that allowed for building a  that could be tested to see if it would verify theories about its performance. Realizing there would still be scaling problems using traditional electrodes, the researchers built a new kind by etching very tiny sheets of graphene. The result was a very tiny transistor, the team reports, capable of moving more current than a standard CMOS transistor using just half of the normal amount of voltage. It was also faster due to a much shorter switch delay, courtesy of the intrinsic delay of just 70 femtoseconds.

The work done by the team in China is important because it offers physical evidence that money being spent on research into  nanotubes as a viable replacement for silicon will indeed pay off if a way to mass produce them can be found. 

Abstract 
High-performance top-gated carbon nanotube field-effect transistors (CNT FETs) with a gate length of 5 nanometers can be fabricated that perform better than silicon complementary metal-oxide semiconductor (CMOS) FETs at the same scale. A scaling trend study revealed that the scaled CNT-based devices, which use graphene contacts, can operate much faster and at much lower supply voltage (0.4 versus 0.7 volts) and with much smaller subthreshold slope (typically 73 millivolts per decade). The 5-nanometer CNT FETs approached the quantum limit of FETs by using only one electron per switching operation. In addition, the contact length of the CNT CMOS devices was also scaled down to 25 nanometers, and a CMOS inverter with a total pitch size of 240 nanometers was also demonstrated.                                         

Bio-magnetic beads, Sulfydryl modified
Huitong TM Samples mixed instrument|100%
Magnetic beads method glue recovery kit
Nano cerium oxide powder (CeO2 powder)
Nano Tungsten disulfide powder
Tungsten carbide nano powder (99.9% )
Nano Dy2O3 powder
Nano Cobalt powder (Nano Co powder)
Nano Aluminum oxide powder (Nano Al2O3Powder)
Nano Boron carbide powder (Nano CB4 Powder)
Tantalum carbide powder (nano particle size)
Nano titanium(Ti) Powder
Nano Titanium carbide powder (Nano TiC powder)
High purity Nano Manganese(Mn) powder
Nano SiO2 Powder
Nano Fe2O3 powder (99.9%)
Nano Aluminium Nitride powder (Nano AlN powder)
Nano Tungsten disulfide powder (Nano WS2 powder)
chitosan beads
aldehyde beads | aldehyde modified microsphere
Bio-magnetic beads, Carboxylic modified
Bio-magnetic beads, Amino modified
Bio-magnetic beads, Silicic modified
Magnetic fluid
Nano SiO2 dispersing agent
Nano Co dispersing agent
Nano oxidation zinc dispersing agent
Nano silver Soil antibacterial agent
Polyurethane release agents
Nano silver Powder (Nano Ag powder purity 99.99)
Thiadiazole-octyl mercaptan condensates(CAS No: 13539-13-4)
Dimercapto-thiadiazole dimerBis-DMTD
DMTD(2,5- dimercapto-1,3,4- thiadiazole)
Methylene bis (dibutyl dithio carbamate)
MoDTC Complexes (Solid MoDTC)
MoDTP (Liquid Molybdenum Dithiophosphate)
Nano Co dispersing agent
Water-based magnesium stearate
Polyurethane Internal Release Agent
Water-based zinc stearate (Vinyl lubricant )
Stearic acid amides emulsion for themal paper
Water-Based Calcium stearate
Coated with abrasive coating slurry